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Advantages of using a multivehicle network over a single autonomous under-

water vehicle platform include extended coverage area, potential cost and time
efficiency, and more robust performance. A common issue that slows advancement
in the field is the limited available communication between the platforms. The ap-
proach we propose is based on assigning a sequence of rendezvous points (RPs)
where the vehicles can meet and exchange information. The work we present in this
paper applies principally to mine countermeasure and suggests that, despite the
disadvantage of time to allow for the vehicles to reach the RPs, there are techniques
that can minimize the losses and provide advantages such as easier coordination
and access points for operator monitoring and system modifications. The results
we present in this paper give an estimate of the reduction in loss if such an approach
is employed. We make a comparison between the RP and a benchmark case by
analyzing numerical simulations.
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do not propagate well underwater, and
therefore, acoustic transmissions are the
Introduction
There has been increased interest in
the last decade in using autonomous un-
derwater vehicles (AUVs) in a network
configuration. However, the inabil-
ity to maintain robust communication
continuously is a major constraint for
the development of such technology.
Radio frequency and optical signals

most common choice. However, there
are severe limitations in range and band-
width of the acoustic communication,
and the network operation must take
this into account (Akyildiz et al., 2005).

The approach we propose is based
on assigning dynamically a sequence
of rendezvous points (RPs) throughout
the mission, a location and time where
all agents in the network agree to meet
and the vehicles can exchange informa-
tion. This way a complete lack of con-
nection can be assumed outside of the
RP perimeter, thus providing a means
for the system to operate under severe
channel conditions. The work we pres-
ent appliesmainly tomine countermea-
sures (MCMs). This paper presents the
idea of applying RP to MCM by pro-
posing adaptive RP scheduling. The
overall goal of this new approach is to
enable an adaptive reallocation of sys-
tem resources to maximize search area
while making explicit the rule of revi-
siting all contacts on the way.

The remainder of the paper is orga-
nized as follows: Section 2 gives details
on different types of MCMs; Section 3
focuses on relevant work published re-
cently on underwater networks and au-
tonomy; Section 4 gives an overview of
theRP idea; Section 5 explains themeth-
odologies adopted for evaluating the RP
method and analyzing the suitable con-
ditions for application; Section 6 shows
simulation results; Section 7 presents the
analysis and limitations of the approach.
The last section concludes the work and
suggests future directions.
Evolution of MCMSystems
TheKorean andGulf wars are exam-

ples where effective mine warfare was
March
applied. Warships were damaged and
amphibious assaults aborted due to the
inability of the navies to counter this
asymmetric threat. Currently, the sheer
number of existing naval mines is an-
other reason to treat the problem as a
challenging and diverse task: it is esti-
mated that a million mines, of more
than 300 types, are stored by 60 navies
worldwide (this excludesU.S. weapons);
mine production exists in more than
30 countries, and export is done by
more than 20. These figures do not ac-
count for improvised explosive devices,
which are considered affordable and
relatively easy to make (Truver, 2012).
TheMCMproblem arises from the dif-
ficulty of distinguishing between the real
mines and the false alarms (FAs) due to
mine-like seafloor objects (Sariel, Balch,
& Erdogan, 2008), as well as from in-
efficient means of clearing them.
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Due to the large diversity of mine
types, their actuation mechanisms and
means of deployment, it is hard to iden-
tify a single best method to deal with the
problem of minefields. Currently, the
conventional MCM approaches are
sweeping and hunting. Minesweeping
is used for removing mines by causing
their detonation or capturing them.
The design of the minesweeping vessel
should be stealthy such that it does not
trigger themine itself, but instead the ex-
plosion occurs at a safe distance where
the towed body with the triggering
mechanism is. Minesweepers can also
capture the chain or cable of moored
mines, which was the predominant
mine type untilWWI, but not that com-
mon presently. The disadvantage of
using such a sweeping technique is that
there can be no assurance that the area
is clear of mines. The other commonly
employed technique, mine hunting, in-
volves prior detection and classification
before any neutralization action is
taken. This brings the advantage of pro-
viding a probabilistic evaluation of the
threat level of the area. The sensor used
to detect mines is sonar, and the ac-
quired imagery is processed by human
operators to classify any contacts that
could be actual mines. Once a decision
is made, the object can be neutralized.

However, some countermeasures
are becoming obsolete with the ad-
vancement of mine technology, and
new solutions are being sought.

In minesweeping, the acoustic and
magnetic vessel signature that would
actuate a mine is mimicked by the
minesweeper vessel in an attempt to
trigger it prematurely. This is becoming
less effective as modern mines rely on
multiple signatures, which are not al-
ways possible to simulate all together
(Truver, 2012). On the other hand,
even if we disregard for a moment the
complicatedmultiple triggeringmecha-
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nism, the sweepingmethod does not re-
sult in any certainty that an area is mine
free (Cornish, 2003). There is the pos-
sibility that a mine did not activate even
though it detected a suitable target. The
actuation mechanism sometimes in-
volves randomized control that selects
a target from a sequence of detections
in order to avoid multiple mines being
triggered by the same contact or hit
only the first vessel from a convoy.

Mine hunting is considered more
reliable than sweeping as at the end of
the mission a level of confidence can be
reached that can be input to a decision-
making process on whether to drive a
ship or convoy through an area (Cao
& Bell, 1999). The process includes a
detection, classification, and identifica-
tion stage performed using imagery
from sonar towed by a ship. Once a
certain target is located, a neutraliza-
tion unit, usually a remotely operated
vehicle (ROV), is sent to dispose of it.
However, there are some issues with
traditional mine hunting techniques.
Mine hunting ships require design
with a minimal vessel signature so that
it does not trigger the mines in its vicin-
ity (Schwarz, 2014). The bigger issue
that remains is that no matter how
stealthy the ship is, there still needs to
be people on board to control the mis-
sion. An alternative is to use a remotely
operated vessel that is controlled from
a safe base on the shore. While this is
technology that is advancing (Benjamin
& Curcio, 2004), there is still the issue
of the sonar not being able to explore
the contacts from close proximity.
The method also relies on a single sen-
sor that makes repeated scans over the
area, which might require long mission
times. The interest in using AUVs for
mine hunting has been increasing
in the last decade, due to cumulative
work in multiple relevant fields to
allow collaboration between vehicles
and lowering the price of commercial
hardware. Recent advances that have
contributed to the area include work
in communication, navigation, locali-
zation, mapping, vehicle design, under-
water swarms, autonomy (surface and
underwater), networking, international
experiments with defense and scientific
applications, etc. (Kalwa et al., 2015;
Dugelay et al., 2015).

Another reason to adopt autono-
mous vehicles for MCM applications
is that there are still some unconven-
tional methods in use, such as sending
divers or mammals to perform the neu-
tralization and search phases. Although
not that common, these techniques
do exist. Mine neutralization methods
conducted by human divers remain the
most reliable. Mammals have more en-
durance and could be trained forMCM
purposes, and there are several existing
programs that have trained dolphins
and sea lions for such a mission. How-
ever, the issue of misunderstanding be-
tween the animal and the handler exists
during a mission. Overall, for both
humans and mammals, the major dis-
advantage is risking their lives by send-
ing them into a minefield (Brown et al.,
2012).

Using AUVs for MCM gives the
advantage of keeping all personnel
at a safe distance by allowing for auton-
omous operation. When a group of
networked vehicles is available, this
has the potential to reduce time, cost,
and efforts compared to single platforms
and current conventional methods.
Such a configuration could also intro-
duce distributed and more efficient
area coverage.
Related Work
Efforts to improve underwater sensor

network (UWSN) performance are com-
monly aimed at modem development



and network protocol design (Partan
et al., 2007; Kong et al., 2005; Cui
et al., 2006). When moving plat-
forms are the focus of the network
configuration, solutions are driven
by ideas adopted by the robotics com-
munity. Examples include adapt-
ing coordination techniques, such as
auction mechanisms (Sariel et al.,
2008; DeMarco et al., 2011). Often
such approaches do not take into ac-
count the limitations imposed by the
communication in the underwater
channel. Some methods for reducing
reliance on communication using
prediction models are also available
(Sotzing & Lane, 2010); however,
they also rely on anticipated environ-
mental conditions.

The work in this paper was devel-
opedwith the focus of adapting optimi-
zation techniques to the appropriate
application constraints. Relevant ideas
have been used for a group of net-
worked surface and underwater vehicles
to adapt their formation to the water
basin borders (Kemna et al., 2015).
The possibility of a group of vehicles
reconfiguring their positions has also
been recognized when the nodes need
to adapt to unexpected conditions or
to seek optimal placement (Braca et al.,
2014; Yilmaz et al., 2008). However,
such solutions aimed at improving au-
tonomy often discount or neglect the
issue of communication.

The idea of synchronous rendez-
vous has been recognized and adopted
for ad hoc networks of mobile autono-
mous agents (Cortes et al., 2006);
however, it is not a typical approach
for UWSN. Although it provides a
means to avoid the communication re-
striction by allowing all nodes to meet
and plan further actions, one major
drawback is that part of the resources
in the system are sacrificed to allow
the nodes to travel to the appointed
place. To reduce the lost time, these
points can be preplanned in a static se-
quence to guarantee optimality. This,
however, introduces rigidness and
lack of adaptability to external events.
Therefore, we propose a rendezvous
approach that allows dynamic online
point allocation based on the informa-
tion gathered by the vehicles and their
future goals.
RP Approach
To improve the resource usage in

the system, we consider a specific ap-
plication and scenario to measure the
loss and evaluate the significance of pa-
rameters for optimizing the RP sched-
uling. This paper looks into applying
the RP approach toMCMand the typ-
ical operation specifics are presented.
Furthermore, the loss mechanism is
explained with regards to the selected
scenario.

MCM Phases and Operation
for AUVs

A typical mine hunting operation
has five phases:
■ Search: An area is scanned formine-

like objects (MLO). To secure com-
plete coverage, often the platform is
moved in a lawnmower pattern.

■ Detection: Contact data are received
from sensors, location is recorded,
and a message of the contact and
its location is created.

■ Classification: A decision is made as
to whether an object is a mine-like or
non-mine-like. This is done by using
autonomous target recognition soft-
ware or a human operator. However,
currently this decision is not trusted
to be made autonomously.

■ Identification: This determines the
type of the mine so further neutral-
ization strategies can be employed.
Often, there is a long delay between
March
Identification and Neutralization
phases, due to the system lacking
the ability of autonomous Classifi-
cation and Identification, which
means the datafirst have to be recov-
ered and processed off-board at the
end of the searchmission and before
the neutralization phase (Brown
et al., 2012).

■ Neutralization: A mine is consid-
ered neutralized once its location
is defined so it can be avoided. In
case the platform cannot evade the
mine, other measures are adopted.
Those can include destroying
the mine, disabling its detonation
ability, or disabling its ability to
detect.
The work in this paper is concerned

with the Search and Identify phases,
without taking into account the sensor
specifics or the autonomous target rec-
ognition restrictions. Instead, it focuses
on optimizing the collaboration be-
tween multiple platforms. The Neutral-
ize phase is excluded as often a ROV,
rather than AUV, is used to properly
guide a disabling mechanism.

A typical multivehicle MCM mis-
sion configuration includes two types
of sensor packages: Search-Classify-
Map (SCM) and Reacquire-Identify
(RI) (Freitag et al., 2005). The SCM
relies on a coarse side-scan sonar allow-
ing faster speed during the searching
phase. The RI phase makes use of a
high-resolution sensor, such as multi-
beam sonar, that collects images for final
identification and decision making.
Often these two tasks are performed
by separate vehicles. The SCMor search
vehicle follows a lawnmower pattern,
while the RI vehicle relocates the target
and further examines it.

RP Loss in MCM Scenario
The limitation of using sepa-

rate vehicles for distinct tasks is not
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necessarily due to hardware restric-
tions. Modern vehicles can have
multiple sensors mounted on the
same platform. However, coordinated
position and task reconfigurability of
multiple networked vehicles is still
a big issue underwater. Using RPs
throughout the mission enables com-
munication between the AUVs and
thus allows for dynamic task realloca-
tion. This can aid higher resource uti-
lization in the network. On the other
hand, there is a trade-off with the
time spent for the platforms to travel
to RP. Evaluating and minimizing
this time loss is vital for the approach
to be applicable.

In order to schedule an RP, all
vehicles in the system have to agree
on the most convenient time and
location to meet. This is done mul-
tiple times throughout the mission,
and the intervals between RPs are
adapted based on the number of con-
tacts found. We divide the RP sched-
uling into two stages: (1) select the
time and (2) select the coordinates of
the RP. To minimize the vehicle trav-
eling time toward the RP, we want
to minimize the total number of RPs
and push the next point as far in time
as possible. On the other hand, we
want to give the system nodes reg-
ular chances to adjust future strategy
and provide updates to the operator.
It is useful to define a suitable time
interval that satisfies the opposing
demands by showing when the re-
source loss becomes prohibitive for
the mission.

The resource loss per vehicle is de-
fined as the time spent by each plat-
form to travel to the RP instead of
doing mission-related task. That is,
travel time from the point when the
vehicle stops its search function and
goes to the RP. Equation 1 gives this
relation by calculating what fraction
8 Marine Technology Society Journal
of the time window between RPs is
spent for reaching the RP:

loss ¼
x

v � tRP
� 1
2

1� 1
n

� �
; n > 1

x
v � tRP

� 1
2n

; n ¼ 1

8>><
>>:

ð1Þ

where x is the width of the search area,
n is the number of vehicles (the cases
and transformations relevant to n are
explained further), v is speed, and tRP
is the time until the next RP. An im-
portant note is the reasoning behind
the choice to evaluate the loss per sin-
gle vehicle and per single RP interval.
First, a single platform loss gives flexi-
bility for reconfigurability throughout
the mission. Second, the single RP in-
terval evaluation, as opposed to total
mission time, comes from the fact
that all RP intervals vary, as they are
a function of the number and location
of contacts found during the search
phase. Therefore, the resulting loss
for adopting the RP approach will be
additive, but nevertheless each time
interval will be unique.

In order to apply Equation 1, some
assumptions are made: the area is
searched sequentially; the vehicles are
homogeneous and have the same
speed. Since the resource loss calcula-
tion is very dependent on the geom-
etry of the search area, Figure 1 gives
a graphical representation of the sce-
nario considered in this paper for
evaluating the RP approach. After de-
fining the favorable parameters for
minimizing the loss, some conclusions
can be drawn on when this approach
might not be applicable due to prohib-
itive losses.

The mission scenario considered
for the remainder of the simulations
in this paper is demining a strip near
the shore. Typically, the width would
be much smaller compared to the
length of the area. Another assumption
is that the vehicles will not be able to
cover the whole area before their batte-
ries are exhausted. The overall purpose
of the mission is to explore as much of
the area as possible, while having the
constraint of revisiting the detected
MLOs.

In Figure 1, x and y are the dimen-
sions of the searched area in the simu-
lated scenario. The red circle on the
top left side pinpoints the starting po-
sition of three available vehicles. They
are all equipped with search (side-scan
sonar) and RI (multibeam) sensors and
can perform both SCM and RI tasks.
The first RP is predefined and the
speed of the vehicles is known, so
this can give a good idea of the location
of the next meeting point as well as the
area that will be covered by each plat-
form. Since the vehicles are homoge-
neous, all three search areas will be
equal (areaveh1 = areaveh2 = areaveh3).

The right-hand side of Figure 1
gives an example of the continuation
of the mission after the first RP. At
the RP, all vehicles have shared the lo-
cation of the contacts they have en-
countered. The path and the required
time to revisit them have been calcu-
lated. A decision has been made that
one vehicle will be reallocated with
an RI task and follow all known con-
tacts (the route is drawn in red in Fig-
ure 1) and two platforms will continue
in search mode, but now with changed
area patterns.

Given the scenario from Figure 1,
the loss calculation from Equation 1
can be further clarified. Normally,
the AUVs would search in a lawn-
mower pattern, as shown in the first
vehicle’s search box (‘veh 1’, left-hand
side of Figure 1). At the time of the
RP, this will bring the AUV either at
the far or close corner of its search



box, which will define the distance and
the subsequent resource loss to the RP.
However, the simulation is not opti-
mized to always position the nodes at
the near corner. To account for this,
the function in Equation 1 is adjusted
to be proportional to the number of
vehicles performing the search phase.
The special case when n = 1 is required
as otherwise it would result in loss = 0.
The current penalty for this case re-
sembles the loss of n = 2.With this cor-
rection, the calculation always assumes
the distance between the middle point
of the platform’s search area (on the
y axis, same as where the RP is) and
the RP point (this distance is noted
on both sides of Figure 1). The distance
penalty is proportionate and increases
when increasing the number of search
platforms. The loss calculation also de-
pends on the speed of the platforms—
the faster they are, the less time is
wasted to travel to the RP. And lastly,
the time to the next RP defines what
fraction of the total time will be used
for task-related purposes and what
part will be traveling to the meeting
point.

It is obvious that the longer the
time between the rendezvous, the
smaller fraction of the time will be
lost in traveling there. On the other
hand, there is a limitation on this
time depending on how often the op-
erator would need an update from the
network. To evaluate when the loss
becomes prohibitive or to define the
minimum time for RP, we have pa-
rameterized Equation 1, and the result
is shown on Figure 2. The graph pre-
sents the loss for a group of two and
three vehicles, respectively, for differ-
ent speed values, v, and width of the
searched area, x, while the RP time in-
terval and the length of the search area
are kept constant (RP = 1 h, y = 5000m).
Then, in Figure 3, we have selected
favorable, but realistic, conditions—
3 vehicles, speed, 2 m/s and width of
2,500 m. The plot shows what per-
centage of the total time is lost if
March
we vary the time of the RP. This can
be used as a rule of thumb guidance
of the minimum time limit of the
next RP.

In the scenario we have selected in
Figure 3, RP between 1 and 2 h gives a
loss between 5% and 12% of the total
time. If this is considered unacceptable
by the operator, the time window can
be moved further in time. The calcu-
lations in the next sections adopt the
parameters used in Figure 3 (n = 3,
x = 2,500 m, v = 2 m/s) and define
an RP interval of 1 h assuming there
is no other parameter to base the deci-
sion on. The scenario from Figure 1 is
used throughout all simulations for the
remainder of the paper.
RP Scheduling
and Analysis

Defining the lower boundary for
scheduling RP is useful when there is
no other information available. How-
ever, the main advantage of the RP
approach comes from the ability to
reallocate vehicle tasks based on the
information they have gathered during
the search.

For example, if we assume the sce-
nario from Figure 1, on the right, but
without utilizing the RP technique, at
the start of the mission two vehicles
will be performing search tasks and
they will send the locations of the de-
tected MLOs to the third vehicle that
is tasked with RI. However, if there is
no prior information about what num-
ber of targets to expect, themission can
be completed with few detectedMLOs
or with a very large number. In the for-
mer case, the RI vehicle will be idle
most of the time; in the latter, the mis-
sion will be incomplete with targets
observed only with low-resolution sen-
sor. This scenario was assumed as a
benchmark case and adopted in all
FIGURE 1

Rendezvous point approach: Left—starting point to first RP. Right—example scenario between two
RPs. (Color version of figures are available online at: http://www.ingentaconnect.com/content/mts/
mtsj/2016/00000050/00000002.)
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simulations throughout the remainder
of this paper for comparison with the
RP approach.

A higher amount of the system re-
source could be utilized if the vehicles
are retasked adaptively according to
the number of detected contacts. Dur-
ing an RP, a decision is made whether
10 Marine Technology Society Journa
there is a need to retask a search vehicle
into an RI vehicle and vice versa based
on how many detections were made
during the previous RP interval. There-
fore, the number of detected targets or
the time it takes for the RI vehicle(s)
to revisit them is the main parameter
that decides how to utilize the avail-
l

able vehicles as well as how to schedule
the RP:

tRP ¼ f tRI þ treaquire
� �

; min;max½ � ð2Þ

where tRI is a calculation of the time
required for a single vehicle to travel
in an optimal path and visit all detected
MLOs to identify them. Additional
time for reacquiring the target locations
once the AUV is at the reported coor-
dinates and collecting high-resolution
sensory information was added by
the treaquire term. For more realistic cal-
culation, this parameter needs to be
adjusted depending on the mission
conditions and the platform sensors.
The [min, max] interval is derived by
using Equation 1 and Figure 3.

The second stage of scheduling the
next RP is the position estimation
of the vehicles at the time when they
will be advancing toward it. This cal-
culation is based on predicting the
vehicles’ positions at the next tRP,, or
the area coverage of the search AUVs.
The Areasearch parameter in Equation 3
gives the area that will be covered by
the search vehicles in the time inter-
val between RPs. This calculation is
performed during the meeting at RP,
after the following RP time is defined
by Equation 2. The position of the
search vehicles coincides with the
y-axis from Figure 1, where the RP is
positioned.

Areasearch ¼ v � sw� tRP � loss� n

ð3Þ

where v is speed of a vehicle, sw is
swath width of the vehicle’s sensor,
tRP is time until next RP, loss is the re-
source waste for traveling to RP using
Equation 1, and n is number of AUVs.
However, since all platforms are as-
sumed to be of the same type, at time
FIGURE 3

Loss of time resource (y axis) vs. total time between RP (x axis)—calculation based on Equation 1
(parameters used: n = 3; x = 2,500 m; v = 2m/s).
FIGURE 2

Loss calculation for two vehicles (lines) and three vehicles (dots): different speed values andwidth of
search area (x), fixed RP time (1 h), and fixed length of the y dimension of searched space (5,000m).



tRP, all nodes will be aligned at the
same y coordinate in the search space.
Therefore, the location of the RP is the
middle of the width of the search area
at this y coordinate, as seen in Figure 1.
Equation 3 accounts only for the posi-
tions of the search vehicles. The RI
vehicles follow the shortest path be-
tween the contacts they will be revisit-
ing and reach back to the current RP.
The advancement over the y-axis made
by the search vehicles has not been
considered for the RI vehicles.

These relations were used to
explore the gains of network re-
configurability by applying the RP
approach. The steps used in our sim-
ulation are summarized in the pseudo
code in Algorithm 1, as well as the
rule-based decision making for how
many platforms to employ search and
RI tasks.

At line 3, the first RP is predefined.
It is assumed that no prior information
is available at the start of the mission;
hence, the RP time is solely driven by
the loss calculation or given the mini-
mum value from Equation 2. The sim-
ulation runs until the mission_time
or the sum of the RP time windows
exceeds a predefined threshold. This
threshold was selected as a percentage
of typical battery capacity of an AUV
—70% of 10 h (line 7). Depending
on the selected parameters, the aver-
age resource loss and search area are
calculated (lines 8 and 9). Once all
platforms reach the first RP, they will
share information about the detected
targets. Communication at RP is as-
sumed available. The MLOs are simu-
lated by generating a random number
of targets, limited in number, and
with locations constrained within the
area that have been searched in the
time window (line 10). The shortest
path to revisit them is then calculated
(line 11).
ALGORITHM 1

Dynamic allocation of vehicle tasks and RP.

The decision making on when to schedule the next RP and howmany vehicles
to send is given between lines 12 and 30. Simple rule-based logic is used. If the
RI time falls in the interval between min_int and 2*min_int (line15), the time for
the next RP is selected as the time it will take an RI vehicle to check all targets, the
search vehicles are reduced by one and the targets in the searched area are consid-
ered identified. In case the time for the RI task exceeds the 2*min_int limit − line
20 (due to too many targets), then two vehicles are tasked to perform the RI task
and the time for the next RP is half of the RI time. The number of search vehicles is
reduced by two, and also all targets are considered identified. In the case when the
RI time is below themin_int threshold, it is better to leave the targets unidentified
until the next RP cycle. The advantage is that all vehicles will perform search rather
than one vehicle tasked with RI and then being idle for portion of the time. The
disadvantage is that, on the next cycle, when there are enough targets to identify,
the path to travel will be longer. In the next section, this trade-off is explored fur-
ther. Lines 12 and 13 ensure that the simulation will be terminated in the case that
more than two RI vehicles are required to identify the contacts from the previous
RP interval.
Results
The function fromAlgorithm 1was used in aMATLAB simulation to evaluate

the performance of the RP approach when variable numbers of MLOs are de-
tected. This assumes the case where no prior intelligence is available about the
expected number of contacts, and thus, the mission operators would be unable
to manage the resources in the system offline.

The aim of this work is to show how applying the RP method gives the op-
portunity for the system to adapt to an unexpected and varying need for retasking
the vehicles. On the other hand, a benchmark scenario was designed where the
March/April 2016 Volume 50 Number 2 11



vehicles’ functionality is predefined, as
would be the case if no autonomy was
implemented. Our expectations were
that the results would show such archi-
tecture makes the system rigid and in-
efficient. To represent this base case,
at the start of our simulated missions,
from the total of three vehicles, to
match the RP case, two AUVs were
designated to perform search and one
was tasked with identifying a detected
contact. The reason to put more vehi-
cles in search was that the objective of
the mission is to maximize the overall
search area. The advantage here is that
there is no loss introduced from regu-
larly traveling to a meeting point as
when the RP method is applied. The
benchmark case assumes that the vehi-
cles have the ability to broadcast target
locations continuously throughout the
duration of the mission with no colli-
sion or message loss.

Figure 4 shows three graphs, each
representing simulation results with
different numbers of detected targets.
At the top is a scenario with low num-
ber of targets (0–10 generated targets
per RP window), the middle graph
shows average number of targets (0–
20 per RP), and at the bottom is a
large number of simulated contacts
(0–30 per RP). The choice of target
number intervals is somewhat arbi-
trary, as this parameter is not based
on literature or experiments. Since
this variable is hard to determine, we
have adopted these intervals based
on the load that would be generated
within the assumed system resources.
Thus, each graph shows results for
100 repetitions of Algorithm 1 where
the randomization of number and loca-
tion of MLOs accounts for variability
in losses and gains in the system.

The graphs in Figure 4 show the
total area searched by the vehicles
(depicted on the y axis) throughout
12 Marine Technology Society Journa
the available mission time (shown in
minutes on the x axis). The scattered
black dots are full mission simula-
tions with the RP approach applied,
while the red dots are simulations
with designated vehicles tasks or the
benchmark case. It is essential to clarify
that the mission time per simulation
is defined by the RP approach, as de-
l

scribed in Algorithm 1 on line 7, and
then this limit is applied to the bench-
mark case, where the same input of
target distribution and number is used
to calculate the overall area searched
by this architecture. This creates a pair
of RP and benchmark case simulations
that give a comparable output as all in-
puts are the same. In Figure 4, there are
100 pairs in each graph, which allow an
evaluation of the loss or gain of apply-
ing the differentmethods, even though
multiple variables are present in the
simulations, such as number and loca-
tion of the targets, as well as mission
duration.

It can be seen on the graphs that
in all cases the red dots follow a linear
relationship—the more mission time
available, the larger area is searched.
On the other hand, the black dots are
scattered below and above this red line,
showing lower resource utilization if
they are below the red line and higher
if they are above.

As expected, in the example of
fewer targets (top graph in Figure 4),
most of the simulations show better
performance for the RP approach,
which allows for function reconfigur-
ability, compared to the case of prede-
fined tasks for the AUVs. The reason
is that the RI vehicle from the bench-
mark mission is being idle for the ma-
jority of the time, as there are not
enough targets to fill its schedule. On
the other hand, the third vehicle in the
RP simulations is performing a search
function during most of the RP win-
dows as there were not enough targets
found to justify the RI task. It can be
observed that with increasing the num-
ber of targets, the advantage of the RP
is lost due to multiple vehicles tasked
with RI throughout themission.How-
ever, in the case of a cluttered envi-
ronment with many contacts present,
the vehicles from the benchmark case
FIGURE 4

Comparison between the RP and benchmark
approaches applied to MCM mission by plot-
ting the search area gained by each method.
The three graphs show how the results change
when the number of targets increases: top
graph gives a simulation with low number of
targets (0 to 10), middle one doubles the
targets (0 to 20), and bottom graph shows a
cluttered environment (0 to 30 contacts per
RP window).



are not able to revisit all detections
as only one vehicle is tasked with RI,
and its resources are not enough. The
comparison between the two ap-
proaches in their ability to revisit and
identify the contacts has been analyzed
further in this paper, and simulation
results are available in Figure 7.

Figure 5 compares the distribu-
tion of the search resource in the RP
and benchmark case. The y axis gives
the average number of search vehicles
utilized per simulation, and the x axis
provides the simulation number.
Since the base case is constantly using
two search vehicles, regardless of the
mission circumstances, there are 100
equally spaced black dots at y = 2
for every simulation number on all
three graphs. When RP is applied,
the search platforms change their
number at every RP window depend-
ing on the available MLOs, as some-
times the RI vehicles can account for
0, 1, or 2 of the total number of ve-
hicles (Algorithm 1, lines 15–28).
Each data point from the blue lines
in Figure 5 corresponds to the aver-
age number of search vehicles utilized
throughout each simulation.

This result can be correlated with
the graphs in Figure 4, explaining the
higher search area covered in the case
when less vehicles are tasked with RI
(top graphs in both figures where less
targets are found) and thus the aver-
age search platform number is much
higher. The bottom graph in Fig-
ure 5, where the RP network of ve-
hicles had to adapt to a large number
of targets, shows that in a proportion
of the simulations less than two vehi-
cles on average were available for the
whole mission. This can explain the
majority of black scattered dots mov-
ing toward the bottom right corner
in the third graph of Figure 4. This
is the undesirable situation when more
time spent at the MCMmission yields
less area searched.

On the other hand, even in the un-
favorable event of encountering many
targets, the RP guarantees that all de-
tections are revisited. The approach
was built with this core objective in
mind and it defined a condition driv-
ing the whole decision process in Algo-
rithm 1. For the benchmark case, some
contacts were not revisited as the RI
March/A
vehicle resource would not be enough.
This is another advantage for the base
scenario, together with the unlimited
communication mentioned earlier,
which makes its results to look more
favorable. However, the objective to
provide high-resolution images of all
MLOs is violated in the benchmark
case and thus making the RP approach
show more pessimistic results than it
would in a fair comparison. The RI suc-
cess rate for both methods is further
analyzed in the next section.
Analysis
In order to give a more suitable rep-

resentation of the outcomes showing
the efficiency gains and losses of the
RP method, Figure 6 displays the
same data as used to present results in
Figure 4, but in a different format. To
achieve a better visualization to distin-
guish between the different approaches,
the benchmark case data points were
rotated and translated to coincide with
the x = 0 axis and plotted as a red line.
Then, the difference between the area
searched by using RP and benchmark
was calculated. This emphasized the
discrepancy in overall area between
the RP and base case pairs. To capture
the dynamics of this variation, these
pairs were further sorted in a descend-
ing order, which resulted in the blue
plotted line on all graphs in Figure 6.
Such result representation is easier to
evaluate by clearly differentiating how
likely it is for the RP approach to be
beneficial. Above the red line or the
zero of the y axis, the RP approach
gains additional search area even though
the vehicles waste time resource for
multiple meetings. If the blue line is
below the red one, then the simulation
instance results in a loss of search area.

In the top graph of Figure 6, show-
ing results from a search with low
FIGURE 5

Comparison between the RP and benchmark
approaches by giving the average number of
search vehicles used per mission. The graphs
show the decreasing availability of search
resource (top to bottom) in the RP case by
increasing the number of detections in the
simulations.
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number of contacts, the RP gives a sig-
nificant gain over the benchmark case
in themajority of the simulations, even
though the loss for vehicles meeting is
accounted for. It is obvious that this
is the most advantageous situation to
apply RP.

The middle graph gives the result-
ing area search difference when dou-
bling the number of targets from the
previous case. Now it is visible that
the majority of the blue line is under
14 Marine Technology Society Journa
the red line; i.e., most simulations
indicate a loss to the system when
applying the RP. However, a large
part of the simulation points fall very
near the red line. In about 40% of
the simulations, the results are within
0.2 km2 of total search area. This ac-
counts for about 3 to 4 min of a single
l

vehicles operation time, according
to Equation 1. This shows that, half
of the time, the RP approach is almost
indistinguishably as good as the
benchmark case. However, it adds the
operational advantages discussed in
Section 4 for system monitoring and
periodic data gathering.

The final graph presents a state
when there is an extensive number of
contacts simulated during the mission
and shows the expected undesirable
results from the RP approach—a lot
of resources would be spent on relocat-
ing these contacts, and this will add to
the time loss brought from the regular
meetings. In reality, most of the con-
tacts would be FAs. Environments
that are characterized by many FAs
in the vehicle sensor, such as rocky
sea bottom, are unfavorable for the
RP approach. It can be seen on the
graph that only very few data points
have the blue line above the red, and
in the majority of the cases this ap-
proach brings loss. In addition, the
loss propagates to significant difference
in search area, in the order of 1.5 km2

and above, for the 30% of the cases.
So far, only the search resource in the

system has been analyzed. Figure 7 gives
an insight how the benchmark and RP
approach spend their RI resources. The
x axis on all graphs is the simulation
number and the y axis measures the
time it would require to spend in RI
phase per mission. In order to make
the comparison clearer, the results of
the 100 repeated simulations were
sorted in a descending order. The red
line is the mission time (different for
each iteration of the algorithm). The
blue line follows the benchmark results,
and the green line follows the corre-
sponding RP results. It is clear that
the benchmark case always uses less
resources compared to when RP is ap-
plied (the blue line is always below the
FIGURE 6

Normalized and sorted simulation results
comparing the gain of search area achieved
by applying RP and base case. The top graph
gives a simulation with low number of targets
(0 to 10), middle one doubles the targets (0 to
20), and the bottom graph shows a cluttered
environment (0 to 30 contacts per RPwindow).
FIGURE 7

Normalized and sorted simulation results
comparing the time required to reacquire and
identify (RI) all detected contacts for applying
RP versus the benchmark case. The top graph
gives a simulation with a low number of tar-
gets (0 to 10), the middle one doubles the tar-
gets (0 to 20), and the bottom graph shows
a cluttered environment (0 to 30 contacts per
RP window).



green line). This comes from the fact
that the RI vehicles in the RP simula-
tions have to go back to each contact
location only after its route is defined
at the meeting point, which adds a
time overhead. On the other hand,
the benchmark case assumed perfect
communication, so the two search ve-
hicles can instantly send their contact
locations and the RI vehicle can select
the shortest path without delay.

In all the cases when the bench-
mark is above the red line or the
limit of the mission time, some con-
tacts remain unidentified, as the RI
resource is not sufficient. This is evi-
dent in the bottom graph where the
majority of the simulations result in
contacts requiring extra RI time. On
the other hand, the RP approach adap-
tively reallocates part of its resource
from search into RI, resulting in more
than one RI vehicle per mission on
average, as can be seen in Figure 5.
Therefore, all contacts are identified
by the end of the mission. This flexi-
bility gives an advantage to the RP ap-
proach that can surpass the overall loss
of time to meet and the reduced total
search area.

A disadvantage of the RP in relation
to the RI resource is that the contacts
are always revisited after a meeting
point. This results in a delayed reac-
tion, and the current simulation does
not allow for the contacts from the
last RP interval to be revisited (as the
algorithm terminates once the mission
time reaches the selected threshold—
line 7 in Algorithm 1). This is an over-
sight of the approach, but it does not
violate the conclusions made in this
paper, as both the benchmark and the
applied RP simulations disregard these
contacts. In a real MCMor experimen-
tal setting, where revisiting the contacts
is crucial, this can be easily amended
by setting the last RP interval to force
each search vehicle to perform the RI
task for its contacts before it goes
back to the mission end point. This,
however, would not contribute to the
current evaluation and was not in-
cluded in the simulations.
Conclusion and
Future Direction

This paper has presented the idea of
adaptive scheduling of RPs for MCM
application with AUVs. The benefit
of using RP is that the vehicles can
be utilized at a constant rate indepen-
dent of the number of targets detected
throughout the mission. In contrast,
when adopting a typical configuration
where the functions of search and ID
vehicles are separated from the start
of the mission, the overall time to
achieve the same result could be signif-
icantly increased if there are large num-
bers of MLOs or the ID vehicle could
be underutilized if their number is low.
The conventional approach thus be-
comes less efficient compared to the
presented RP method.

This work can be improved by
relaxing or refining some of the as-
sumptions which forced pessimistic
calculations, such as adjusting the
position of the search vehicle when
calculating the loss and the time re-
quired for reacquiring a target. An-
other important change would be
allowing different kinds of vehicles
with varying speed and sensors that
will add diversity to the simulation
and make it more realistic. Finally, re-
laxing the assumption of sequential
search allows for the use of a probabi-
listic model of selecting which area to
be given priority for exploration and
which one needs a repeated coverage.
This also calls for more sophisticated
decision making, such as using Markov
processes.
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